Calcolatori Elettronici Architettura i8086

Ing. Gestionale e delle Telecomunicazioni A.A. 2009/10 Gabriele Cecchetti

Architettura i8086

Sommario:

- Registri
- Accesso alla memoria: indirizzi effettivo, indirizzo fisico
- Repertorio mnemonico delle istruzioni
- Modalità di indirizzamento degli operandi

Riferimenti

 G. Bucci "Architetture e organizzazione dei Calcolatori Elettronici – Fondamenti", Cap. 9

Cenni storici al processore i8086

- La CPU Intel 8086 è la prima appartenente all'architettura x86. Essa risale al 1976.
- E' un processore a 16 bit, in tecnologia da 30um (oggi il processo produttivo si spinge fino a 45nm).
- La frequenza di clock dell'epoca era di 5Mhz (contro i Ghz dei processori odierni).
- Ogni istruzione macchina impiegava 15 cicli di clock per essere eseguita → 15 * 1/50000000 = 200 us → 0,33 milioni di istruzioni per secondo.

G. Cecchetti

Calcolatori Elettronici per Ing. Gestionale e Telecomunicazioni

٠.

Registri generali, di segmento, IP e di stato

REGISTRI

I registri dell'i8086

8 registri generali:

- AX, BX, CX, DX detti registri dati,
- □ SP, BP, SI, DI detti registri indice.
- 4 registri di segmento (o registri selettori):
 - CS, SS, DS, ES
- 1 registro IP usato come puntatore di istruzione in congiunzione con CS;
- 1 registro di stato (registro del Flag).

G. Cecchetti

Calcolatori Elettronici per Ing. Gestionale e Telecomunicazioni

٠,

I registri dati

I registri AX, BX, CX e DX sono a 16 bit: ognuno di essi è diviso in due registri da 8 bit corrispondenti ai bit più significativi e meno significativi rispettivamente:

- □ AH, AL
- BH, BL
- CH, CL
- DH, DL

Questi registri possono essere utilizzati senza alcuna distinzione in operazioni aritmetiche e logiche.

Ruoli specifici per i registri dati

- AX → registro accumulatore, usato anche per I/O, operazioni aritmetiche e su stringhe.
- BX → registro base per il calcolo degli indirizzi.
- CX → registro contatore.
- DX → registro usato per I/O, moltiplicazione e divisione.

G. Cecchetti

Calcolatori Elettronici per Ing. Gestionale e Telecomunicazioni

Registri indice e puntatori

- SP → puntatore alla cima dello stack
- BP → puntatore entro lo stack
- SI → registro indice generico, usato per indiciare la stringa sorgente.
- DI → registro indice generico, usato per indiciare la stringa di destinazione.

Registri di segmento e registro IP

- CS → segmento codice corrente
- SS → segmento stack
- DS → segmento dati
- ES → segmento dati
- Il registro IP contiene l'offset rispetto al registro CS dell'istruzione successiva da eseguire.

G. Cecchetti

Calcolatori Elettronici per Ing. Gestionale e Telecomunicazioni

Registro di stato

Contiene 9 indicatori a 1 bit, detti anche flag:

- Flag di stato
 - □ CF Carry flag → riporto
 - □ AF Auxiliary flag → riporto sul bit 3 (aritmetica BCD)
 - □ OF Overflow flag → trabocco
 - □ SF Sign flag → risultato negativo
 - □ ZF Zero flag → risultato zero
 - □ PF Parity flag → risultato con numero di bit a 1 pari
- Flag di controllo
 - □ DF Direction flag → direzione manipolazione stringhe
 - □ IF Interrupt flag → abilita/disabilita le interruzioni
 - □ TF Trap flag → permette l'esecuzione single step

Memoria segmentata e memoria Fisica

ACCESSO ALLA MEMORIA

G. Cecchetti

Calcolatori Elettronici per Ing. Gestionale e Telecomunicazioni

11

Memoria segmentata dell'i8086

- Ogni segmento è una unita logica di memoria che può avere una estensione massima di 2¹⁶ = 64KB.
- Ogni segmento si compone di locazioni contigue di memoria e può essere posizionato in qualunque locazione di memoria.
- I segmenti possono essere adiacenti, disgiunti oppure parzialmente o totalmente sovrapposti.
- Gli indirizzi logici si esprimono nella forma:

SELETTORE : Offset

Calcolo dell'indirizzo fisico dell'i8086 (2/2)

Il processore i8086 ha 20 piedini per indirizzare la memoria fisica: pertanto gli indirizzi fisici vengono ottenuti nel modo seguente:

```
Indirizzo fisico = CS * 16 + IP
```

La CPU i8086 può indirizzare fino a 1MB (2²⁰ Bytes) di memoria fisica.

G. Cecchetti

Calcolatori Elettronici per Ing. Gestionale e Telecomunicazioni

13

Uso dei registri di segmento dell'i8086

Tipo di riferimento	Registro normale	Registro. alternativo	Offset
Fetch	CS		IP
Stack	SS		SP
Variab.	DS	CS, ES, SS	Ind. eff.
Stringhe sorg.	DS	CS, ES, SS	SI
Stringhe dest.	ES		DI
BP	SS	CS,DS,ES	Ind. eff.

Esempio:

Uso dello stack dell'i8086

- Lo stack ha ampiezza di parola (nell'8086 16 bit).
- Operazioni:
 - □ PUSH → immette i dati nello stack

```
PUSH AX ; M[SS:SP] ← AX
```

□ POP → preleva i dati dallo stack

```
POP AX ; AX ← M[SS:SP]
```

Accesso diretto allo stack

```
MOV AX,[BP] ; AX \leftarrow M[SS:BP]
```

G. Cecchetti

Calcolatori Elettronici per Ing. Gestionale e Telecomunicazioni

15

Accesso alla memoria dell'i8086

- L'organizzazione è di tipo little endian.
- La CPU può leggere/scrivere 8 o 16 bit (sono permesse anche parole non allineate).
- Memoria segmentata che consente l'uso di aree separate per codice, stack e dati e facilita la rilocazione dei programmi.

Partenza (boot/reset) dell'i8086

 $CS \leftarrow FFFFh$ $IP \leftarrow 0000h$

- L'indirizzo effettivo della prima istruzione è FFF0h.
- Questa indirizzo di solito contiene il salto alla prima effettiva istruzione del programma.
- Questa porzione di memoria di solito è contenuta in una ROM che avvia il firmware di inizializzazione del sistema (detto BIOS – Basic Input/Output System), che di solito si trova su memoria Flash (EEPROM).

G. Cecchetti

Calcolatori Elettronici per Ing. Gestionale e Telecomunicazioni

17

Le istruzioni dell'i8086

REPERTORIO MNEMONICA DELLA ISTRUZIONI

Repertorio mnemonico delle istruzioni dell'i8086 (1/5)

Trasferimento dati

MOV ; Copia un byte/parola

PUSH/POP ; Immette/estrae una parola nello stack

ingresso/uscita

PUSHF/POPF ; Immette/estrae registri di stato nello

stack

PUSHA/POPA ; Immette/estrae 8 registri generali a

16 bit

PUSHAD/POPAD ; Immette/estrae 8 registri generali a

32 bit

XCHG ; Scambia sorgente e destinatario

G. Cecchetti

Calcolatori Elettronici per Ing. Gestionale e Telecomunicazioni

19

Repertorio mnemonico delle istruzioni dell'i8086 (2/5)

Istruzioni aritmetiche

ADD/SUB ; Somma/Sottrae un byte/parola

ADC/SBB ; Somma/Sottrae con riporto/prestito

CMP ; Compara byte/parole

AAS ; Aggiusta ASCII per somma

MUL/IMUL ; Moltiplica interi senza segno/con segno

DIV/IDIV ; Divide interi senza segno/con segno

CBW/CWD/CDO; Converte byte a word / da word a

double-word / da double-word a quad-

word

Repertorio mnemonico delle istruzioni dell'i8086 (3/5)

Manipolazione dei bit

```
AND/OR/XOR; Esegue l'AND/OR/XOR su byte/parole
```

NOT ; Esegue il NOT su byte/parola

SHL/SHR ; Scorrimento a sinistra/destra numeri

nat.

SAL/SAR ; Scorrimento a sinistra/destra numeri

int.

ROL/ROR ; Ruota a sinistra/destra numeri naturali

RCL/RCR ; Ruota a sinistra/destra con il riporto

Manipolazioni stringhe

MOVSB ; Sposta una stringa di byte

CMPS ; Confronta stringhe

G. Cecchetti

Calcolatori Elettronici per Ing. Gestionale e Telecomunicazioni

21

Repertorio mnemonico delle istruzioni dell'i8086 (4/5)

Salti

```
JMP; Salto incondizionato
```

JE/JNE/JZ/JNZ ; Salti condizionati (ZF)

JA/JAE/JB/JBE/JG/JGE/JL/JLE; Salti cond. (ZF,CF)

JC/JNC ; Salti cond. (CF) - JO/JNO ; Salti cond. (OF)
JS/JNS ; Salti cond. (SF) - JPE/JPO ; Salti cond.(PF)

LOOP → DEC CX e JMP

LOOPE/LOOPNE/LOOPZ/LOOPNZ → DEC CX e JE/JNE/JZ/JNZ

Procedure

CALL ; Chiamata di sottoprogramma RET ; Ritorno dal sottoprogramma

Interruzioni

INT ; Interruzione software

IRET ; Ritorno da interruzione

Repertorio mnemonico delle istruzioni dell'i8086 (5/5)

Controllo della CPU

STC/CLC ; Imposta/resetta il riporto

SLI/CLI ; Abilita/disabilita le interruzioni

Sincronizzazione con l'esterno

HLT ; Passa allo stato di halt
WAIT ; Passa allo stato di wait

Istruzione di non operazione

NOP ; Non fa niente

G. Cecchetti

Calcolatori Elettronici per Ing. Gestionale e Telecomunicazioni

23

Modalità di indirizzamento operandi dell'i8086

```
Indirizzamento dei registri della CPU
```

MOV AH, BL ; AH \leftarrow BL

Indirizzamento degli operandi immediati

MOV AH, 2476 ; AH ← 2476

Indirizzamento diretto in memoria

MOV AX, Var ; AX \leftarrow M[DS:Offset(Var)]

Indirizzamento indiretto rispetto ai registri

MOV [BX], AL ; M[BX] \leftarrow AL

Indirizzamento relativo a un registro

MOV AX, Var[SI] ; AX ← M[DS:Offset(Var)+SI]

Indirizzamento indiretto attraverso un registro e indiciato

MOV [BX][DI], AX ; $M[BX+DI] \leftarrow AX$

Indirizzamento delle porte di I/O

IN AL, PORTA ; AL←Porta in Ingresso

Indirizzamento delle porte di I/O con registro

OUT [DX],AX ; Porta[DX]←AH