Architettura dei Calcolatori Rappresentazione dell'informazione

Ing. dell'Automazione A.A. 2011/12 Gabriele Cecchetti

Rappresentazione dell'informazione

Sommario:

- Numerazione posizionale
- Conversione tra basi diverse
- Aritmetica binaria
- Numeri relativi
- Numeri frazionari
- Numeri in virgola mobile

Riferimenti:

- Hamacher "Introduzione all'architettura del Calcolatore", cap.
 3, sez. 3.1, 3.2, 3.3, 3.4 e 3.5
- G. Bucci "Architetture e organizzazione dei Calcolatori Elettronici – Fondamenti", Cap. 2, tutte le sezioni eccetto 2.6.2 e 2.6.3

Cos'è un numero ? - Notazione posizionale

- Il NUMERO è un concetto astratto e corrisponde alla descrizione quantitativa degli oggetti contenuti in un dato insieme.
- Un SISTEMA DI NUMERAZIONE è un insieme di simboli e regole atti a rappresentare numeri.
- Notazione posizionale: permette di rappresentare un numero naturale qualsiasi (intero non negativo).

G. Cecchetti Architettura dei Calcolatori

Sistema posizionale decimale

La notazione decimale tradizionale è di tipo posizionale; esempio:

 $2718 = 2 \times 10^3 + 7 \times 10^2 + 1 \times 10^1 + 8 \times 10^0$

Sistema posizionale

- In generale,
 - □ dato un numero B ≥ 2, detto BASE, e
 - □ dato l'insieme composto da B *simboli diversi* $\beta = \{0, ..., B-1\},$
 - □ la stringa di n cifre:

$$\mathbf{b_{n-1}b_{n-2} \dots b_1b_0}$$
 con $\mathbf{b_i}$ appartenente a $\boldsymbol{\beta}$

□ si interpreta come:

$$b_{n-1}x B^{n-1} + b_{n-2}x B^{n-2} + ... + b_1x B^1 + b_0x B^0$$

G. Cecchetti Architettura dei Calcolatori 5

Esempi con basi diverse

- 217₈
- **■** 36₁₆
- 2A₁₆
- **1001**₂

Basi più interessanti per i calcolatori

Base 2 e base 16.

B=10	B=2	B=16
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	E
15	1111	F
16	10000	10
17	10001	11
18	10010	12

G. Cecchetti Architettura dei Calcolatori 7

Numeri binari naturali

- Numeri binari naturali: si utilizza un sistema di numerazione posizionale in base B = 2
- La sequenza di bit:

$$b_n b_{n-1} \dots b_0$$

dove si ha $b_i = 0$ o 1, in base 2 rappresenta:

$$b_n \times 2^{n-1} + b_{n-1} \times 2^{n-2} + \dots + b_0 \times 2^0$$

- Esempi con n = 8:
 - $00000000_2 = 0_{10}$
 - $\quad \ \ \, 00001000_2 = 1 \times 2^3 = 8_{10}$
 - $\quad \ \ \, 00101011_2 = 1\times 2^5 + 1\times 2^3 + 1\times 2^1 + 1\times 2^0 = 43_{10}$
 - $111111111_2 = \Sigma_{n=1,2,3,4,5,6,7,8} \ 1 \times 2^{n-1} = 255_{10}$

Conversioni tra basi

- da base 2 a base 10
- da base 10 a base 2
- da base 2 a base 16
- da base 16 a base 2
- tra basi generiche

G. Cecchetti Architettura dei Calcolatori

Conversione da base 2 a base 10

Considerando la relazione:

$$b_{n-1}x B^{n-1} + b_{n-2}x B^{n-2} + ... + b_1x B^1 + b_0x B^0$$
 che nel caso di B=2 diviene:

$$b_{n-1}x \ 2^{n-1} + b_{n-2}x \ 2^{n-2} + ... + b_1x \ 2^1 + b_0x \ 2^0$$
 è sufficiente sommare le potenze corrispondenti alle cifre '1'. Esempio:

Conversione rapida da base 2 a base 10 (1/2)

In binario si definisce una notazione abbreviata, sulla falsariga del sistema metrico-decimale:

- Attenzione: K, M, G e T in base 2 abbiano valori molto prossimi ai corrispondenti simboli del sistema metricodecimale (sistema MKS).
- L'errore risulta < 10 % (vedi come la 2ª cifra sia = 0).</p>

G. Cecchetti Architettura dei Calcolatori 11

Conversione rapida da base 2 a base 10 (2/2)

- Diventa molto facile e quindi rapido calcolare il valore decimale approssimato delle potenze di 2, anche se hanno esponente grande.
- Infatti è sufficiente:
 - tenere a mente l'elenco dei valori esatti delle prime dieci potenze di 2:

$$2^{0} = 1$$
, $2^{1} = 2$, $2^{2} = 4$, $2^{3} = 8$, $2^{4} = 16$, $2^{5} = 32$, $2^{6} = 64$, $2^{7} = 128$, $2^{8} = 256$, $2^{9} = 512$;

 e scomporre in modo additivo l'esponente in contributi di valore 10, 20, 30 o 40, "leggendoli" come successioni di simboli K, M, G oppure T.

Esempio:

```
2^{17} = 2^{7+10} = 2^7 \times 2^{10} = 128 \text{ K} che può essere letto "128 mila" in realtà, 2^{17} = 131.072, errore = 1-128.000/131.072 \approx 2,3\%
```

Conversione da base 10 a base 2 (1/3)

- In generale,
 - per convertire un numero decimale N
 - □ in un numero binario (**B** = 2)
 - occorre trovare la stringa di n cifre binarie:

$$b_{n-1}b_{n-2} \dots b_1b_0$$

tale che

$$N = b_{n-1}x \ 2^{n-1} + b_{n-2}x \ 2^{n-2} + ... + b_1x \ 2^1 + b_0x \ 2^0$$

G. Cecchetti Architettura dei Calcolatori 13

Conversione da base 10 a base 2 (2/3)

$$N/2 = b_{n-1}x2^{n-2} + b_{n-2}x2^{n-3} + ... + b_1x2^0$$
, $R_0 = b_0$

$$(b_{n-1}x2^{n-2} + b_{n-2}x2^{n-3} + ... + b_1x2^0)/2 = b_{n-1}x2^{n-3} + b_{n-2}x2^{n-4} + ... + b_2x2^0,$$
 $R_1 = b_1$

. . .

la ricerca dei coefficienti b-i richiede che si prosegua il procedimento fino a che il quoziente ottenuto non è più divisibile. Alla fine: $\mathbf{Q}=\mathbf{b}_{n-1}$ e $\mathbf{R}_{n-2}=\mathbf{b}_{n-2}$

La rappresentazione binaria si ottiene scrivendo da sn. verso dx. **i resti in ordine inverso** a quello secondo cui sono stati prodotti.

Conversione da base 10 a base 2 (3/3)

In pratica:

- decidere se il numero sia pari (resto 0) oppure dispari (resto 1), e annotare il resto
- 2. dimezzare il numero (trascurando il resto)
- 3. ripartire da (1) fino a ottenere 1 oppure 0

<u>si calcolano i resti delle</u> <u>divisioni per due</u>

$$19_{10} = 10011_2$$

 $0 \rightarrow 1$

G. Cecchetti Architettura dei Calcolatori 15

Esempio di convers. da base 10 a base 2

$$35_{10} \rightarrow$$

$$35/2=17$$
, $R_0=1$;
 $17/2=8$, $R_1=1$;
 $8/2=4$, $R_2=0$;
 $4/2=2$, $R_3=0$;
 $2/2=1=Q$, $R_4=0$ (1 non è più divisibile per 2)
 $\rightarrow 100011_2$

Conversione da binario ad esadecimale

 Si scompone il numero binario in gruppi di 4 bit e si traduce ogni gruppo nella corrispondente cifra esadecimale.

Esempio:

G. Cecchetti Architettura dei Calcolatori 17

Base 8 (ottale)

- Si usano solo le cifre 0-7 (scartando 8 e 9)
 - per esempio:

$$534_{oct} = 5 \times 8^2 + 3 \times 8^1 + 4 \times 8^0 = 348_{10}$$

Base 16 (esadecimale)

- Si usano le cifre 0-9 e le lettere A-F
 (ponendo: A = 10, B = 11, ..., F = 15)
 - per esempio:

$$\begin{array}{ll} B7F_{hex} & = B\times 16^2 + 7\times 16^1 + 15\times 16^0 = \\ & = 11\times 16^2 + 7\times 16^1 + 15\times 16^0 = 2943_{10} \end{array}$$

G. Cecchetti Architettura dei Calcolatori 19

Conversione da tra esadecimale e binario

 Si traduce ogni cifra esadecimale nella corrispondente codifica binaria.

Esempio: considerato il numero A03B₁₆ traducendo ogni sua cifra in binario:

$$= A = 1010$$

$$0 = 0000$$

$$= 3 = 0011$$

$$B = 1011$$

Quindi:

$$A03B_{16} \rightarrow 1010\ 0000\ 0011\ 1011$$

Esempi di conversione esadec./binario

Conversione: 010011110101011011₂ in hex

Conversione: A7B40C_{hex} in binario

$$A_{hex}$$
 7_{hex} B_{hex} 4_{hex} 0_{hex} C_{hex} = 10_{dec} 7_{dec} 11_{dec} 4_{dec} 0_{dec} 12_{dec} = 1010_2 0111_2 1011_2 0100_2 0000_2 1100_2 = $101001111011010000001100_2$

G. Cecchetti Architettura dei Calcolatori 21

Conversione tra base Bk e base B

Esercizio

Aritmetica binaria dei numeri naturali

- Aumento
- Riduzione
- Somma
- Sottrazione
- Moltiplicazione
- Divisione

G. Cecchetti Architettura dei Calcolatori 23

Aumento e riduzione di bit

Aumento dei bit: premettendo in modo progressivo un bit 0 a sinistra, il valore del numero non muta. Esempio:

```
4_{10} = 100 = 0100 = 00100 = ...

5_{10} = 101 = 0101 = 00101 = ...
```

Riduzione dei bit: cancellando in modo progressivo un bit 0 a sinistra, il valore del numero non muta, ma bisogna arrestarsi quando si trova un bit 1! Esempio:

```
7_{10} = 000111 = 00111 = 0111 = 111 STOP! 2_{10} = 0010 = 010 = 10 STOP!
```

Aritmetica binaria: somma numeri naturali

Tabella della somma:

$$0 + 0 = 0$$

$$-1+0=1$$

Esempio: 1010+111

111

10001

G. Cecchetti Architettura dei Calcolatori 25

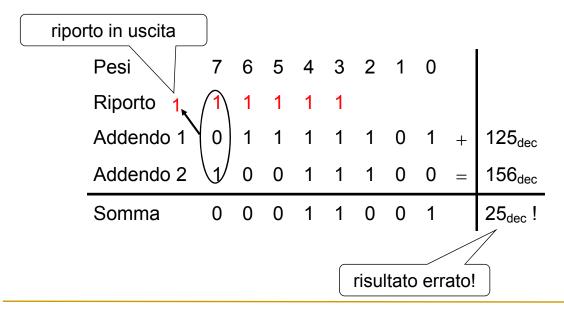
Aritmetica binaria: algoritmo di somma numeri naturali

Si usa l'algoritmo chiamato "addizione a propagazione del riporto"; esso è l'algoritmo elementare decimale, adattato però alla base 2. Esempio per n=8:

Pesi	7	6	5	4	3	2	1	0		
Riporto			1	1	1					
Addendo 1	0	1	0	0	1	1	0	1	+	77 _{dec}
Addendo 2	1	0	0	1	1	1	0	0	=	156 _{dec}
Somma	1	1	1	0	1	0	0	1		233 _{dec}

Aritmetica binaria: algoritmo di somma numeri naturali

Addizione con riporto in uscita (carry out)



G. Cecchetti Architettura dei Calcolatori 27

Aritmetica binaria: sottrazione numeri naturali

Tabella della sottrazione:

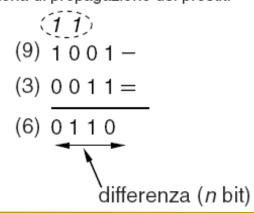
$$0 - 0 = 0$$

Esempio: 1010-111

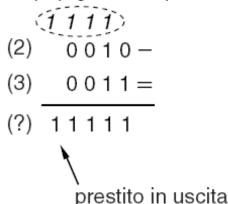
Aritmetica binaria: algoritmo di sottrazione dei numeri naturali

L'algoritmo è quello manuale, con propagazione dei prestiti: la sottrazione naturale è possibile solo se il minuendo è maggiore del o uguale al sottraendo.

catena di propagazione dei prestiti



catena di propagazione dei prestiti



G. Cecchetti Architettura dei Calcolatori 29

Aritmetica binaria: moltiplicazione numeri naturali

Tabella della moltiplicazione:

$$0 \times 0 = 0$$

$$0 \times 1 = 0$$

$$1 \times 0 = 0$$

Esempio: 1010x111

Aritmetica binaria: divisione

Tabella della divisione:

Esempio: 1100:11

001

0 1

Esempio: 10101:11

100

011

0

G. Cecchetti Architettura dei Calcolatori 31

Numeri relativi

- In un calcolatore i numeri sono rappresentati in gruppi di bit o parole (es. 8, 16, 32, ...)
- Sia $\mathbf{B} = \mathbf{b_{n-1}b_{n-2} \dots b_1b_0}$ con $\mathbf{b_i}$ appartenente a $\beta = \{0,1\}$
- B rappresenta 2ⁿ numeri interi **positivi**: 0 < B < 2ⁿ⁻¹-1
- Stabiliamo una convenzione:
 - \Box se MSB = 1 \rightarrow B < 0
 - □ **se MSB = 0** \rightarrow **B** ≥ **0**, ove MSB (*Most Significative Bit*) = b_{n-1}

Numeri relativi: rappresentazioni

- Esistono tre rappresentazioni principali:
 - □ Modulo e segno
 - Rappresentazione in complemento a 1
 - Rappresentazione in complemento a 2

G. Cecchetti Architettura dei Calcolatori 33

Rappresentazione modulo e segno (1/3)

■ Sia *n* il numero di bit di una parola:

$$-(2^{n-1}+1) < B < 2^{n-1}-1$$

Numeri negativi (B < 0): da -0 a - $(2^{n-1}+1)$

Numeri positivi (B > 0): da 0 a 2^{n-1} -1

Nota.

Il numero 0 esiste sia come +0 che come -0.

Rappresentazione modulo e segno (2/3)

- Numeri binari interi (positivi e negativi) in modulo e segno:
 - il primo bit (quello a sinistra) rappresenta il segno del numero,
 - 0 per segno positivo
 - 1 per segno negativo
 - mentre i bit rimanenti ne rappresentano il valore assoluto
- Esempio per una parola di n=4 bit:

$$5_{10} \rightarrow 0101_{2}$$

$$-5_{10} \rightarrow 1101_{2}$$

G. Cecchetti Architettura dei Calcolatori 35

Rappresentazione modulo e segno (3/3)

Osservazioni:

- Il bit di segno è applicato al numero rappresentato, ma non fa propriamente parte del numero in quanto tale, perché il bit di segno non ha significato numerico.
- Distaccando il bit di segno, i bit rimanenti rappresentano il valore assoluto del numero.

Rappresentazione in complemento a 1

Sia n il numero di bit di una parola:

$$-(2^{n-1}+1) < B < 2^{n-1}-1$$

Numeri negativi (B < 0): da -0 a $-(2^{n-1}+1)$ Numeri positivi (B>0): da 0 a $2^{n-1}-1$

- Il cambiamento di segno si ottiene complementando ciascun bit.
- Esempio per n=4 bit:

$$5_{10} \rightarrow 0101_2$$

 $-5_{10} \rightarrow 1010_2$

G. Cecchetti Architettura dei Calcolatori 37

Rappresentazione in complemento a 2 (1/2)

Sia n il numero di bit di una parola:

$$-2^{n-1} < B < 2^{n-1}-1$$

Numeri negativi (B < 0): da -1 a -2^{n-1} Numeri positivi (B>0): da 0 a 2^{n-1} -1

- Il cambiamento di segno si ottiene complementando a 1 e quindi sommando 1 al numero ottenuto.
- Esempio per n=4 bit:

$$5_{10} \rightarrow 0101_2$$

 $-5_{10} \rightarrow 1010_2 + 0001_2 = 1011_2$

Rappresentazione in complemento a 2 (2/2)

- Nella rappresentazione in complemento a 2 (C₂) il bit il più significativo ha peso negativo, mentre tutti gli altri bit hanno peso positivo.
- La sequenza di bit:

$$b_{n-1} b_{n-2} \dots b_0$$

rappresenta in C₂ il valore:

$$-b_{n\text{--}1} \times 2^{n\text{--}1} \ + b_{n\text{--}2} \times 2^{n\text{--}2} \ + \ldots \ + b_0 \times 2^0$$

■ Il bit più a sinistra viene chiamato bit di segno.

G. Cecchetti Architettura dei Calcolatori 39

Esempio: numero a 3 bit in complemento a 2

$$000_{C2} = -0 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = 0_{10}$$

$$001_{C2} = -0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 1_{10}$$

$$010_{C2} = -0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 2_{10}$$

$$011_{C2} = -0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 2 + 1 = 3_{10}$$

$$100_{C2} = -1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0 = -4_{10}$$

■
$$101_{C2} = -1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = -4 + 1 = -3_{10}$$

■
$$110_{C2} = -1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = -4 + 2 = -2_{10}$$

■
$$111_{C2} = -1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = -4 + 2 + 1 = -1_{10}$$

Invertire un numero in Complemento a 2

- L'inverso additivo (od opposto) di un numero rappresentato in C₂ si ottiene:
 - invertendo (negando) ogni bit del numero
 - addizionando 1 nella posizione meno significativa
- Esempio per n=5:

$$01011_{C2} = 1 \times 2^{3} + 1 \times 2^{1} + 1 \times 2^{0} = 8 + 2 + 1 = 11_{10}$$

$$10100 + 1 = 10101_{C2} = -1 \times 2^{4} + 1 \times 2^{2} + 1 \times 2^{0} =$$

$$= -16 + 4 + 1 = -11_{10}$$

G. Cecchetti Architettura dei Calcolatori 41

Conversione da Decimale a C₂

- Se D_{dec} ≥ 0:
 - □ converti D₁₀ in binario naturale
 - premetti il bit 0 alla sequenza di bit ottenuta
 - □ esempio: $154_{10} \Rightarrow 10011010_2 \Rightarrow 010011010_{C2}$
- Se $D_{10} < 0$:
 - □ trascura il segno e converti D₁₀ in binario naturale
 - premetti il bit 0 alla sequenza di bit ottenuta
 - calcola l'opposto del numero così ottenuto, secondo la procedura di inversione in C₂
 - □ esempio: $-154_{10} \Rightarrow 154_{10} \Rightarrow 10011010_2 \Rightarrow$ $\Rightarrow 010011010_2 \Rightarrow 101100101 + 1 \Rightarrow 101100110_{C2}$
- Occorrono 9 bit sia per 154₁₀ sia per -154₁₀

Aumento e Riduzione dei Bit in C₂

 Estensione del segno: replicando in modo progressivo il bit di segno a sinistra, il valore del numero non muta. Per esempio:

```
4 = 0100 = 00100 = 000100 = ... (indefinitamente)
-5 = 1011 = 11011 = 111011 = ... (indefinitamente)
```

Contrazione del segno: cancellando in modo progressivo il bit di segno a sinistra, il valore del numero non muta, purché così facendo il bit di segno non abbia a invertirsi! Per esempio:

```
7 = 000111 = 00111 = 0111 STOP! (111 è < 0)
-3 = 111101 = 11101 = 1101 = 101 STOP! (01 è > 0)
```

G. Cecchetti Architettura dei Calcolatori 43

Osservazioni

- Il segno è incorporato nel numero rappresentato in C₂, non è semplicemente applicato (come in segno e valore assoluto).
- Il bit più significativo rivela il segno: 0 per numero positivo, 1 per numero negativo (il numero zero è considerato positivo), ma ...
- NON si può distaccare il bit più significativo e dire che i bit rimanenti rappresentino il puro valore, senza segno, del numero (ciò è vero solo se il numero è positivo)!

Riepilogo rappresentazione interi su 4 bit

Dec.	Segno e modulo	Compl. a 1	Compl. a 2
7	0111	0111	0111
6	0110	0110	0110
5	0101	0101	0101
4	0100	0100	0100
3	0011	0011	0011
2	0010	0010	0010
1	0001	0001	0001
0	0000	0000	0000

Dec.	Segno e modulo	Compl. a 1	Compl. a 2
-0	1000	1111	-
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	-	-	1000

G. Cecchetti Architettura dei Calcolatori 45

Confronto tra Rappresentazioni

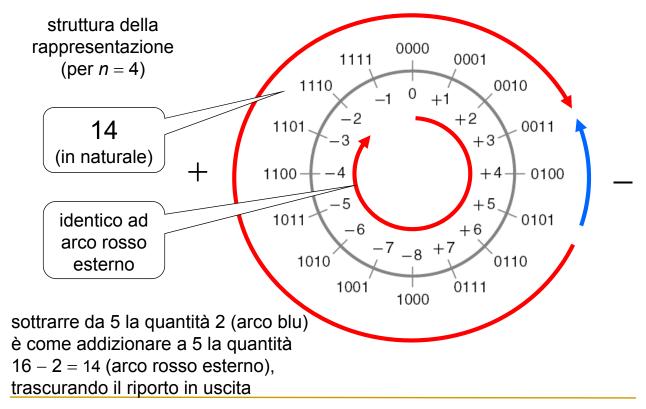
	l	В		valore rappresentato					
b_3	b_2	b_1	b_0	naturale	segno e val. ass.	comp. a 1	comp. a 2		
0	1	1	1	+7	+7	+7	+7		
0	1	1	0	+6	+6	+6	+6		
0	1	0	1	+5	+5	+5	+5		
0	1	0	0	+4	+4	+4	+4		
0	0	1	1	+3	+3	+3	+3		
0	0	1	0	+2	+2	+2	+2		
0	0	0	1	+1	+1	+1	+1		
0	0	0	0	+0	+0	+0	+0		
1	0	0	0	+8	-0	- 7	-8		
1	0	0	1	+9	-1	-6	- 7		
1	0	1	0	+10	-2	-5	- 6		
1	0	1	1	+11	-3	-4	-5		
1	1	0	0	+12	-4	-3	-4		
1	1	0	1	+13	-5	-2	-3		
1	1	1	0	+14	- 6	-1	-2		
_1	1	1	1	+15	- 7	-0	-1		

Esempio di addizione algebrica in complemento a 2

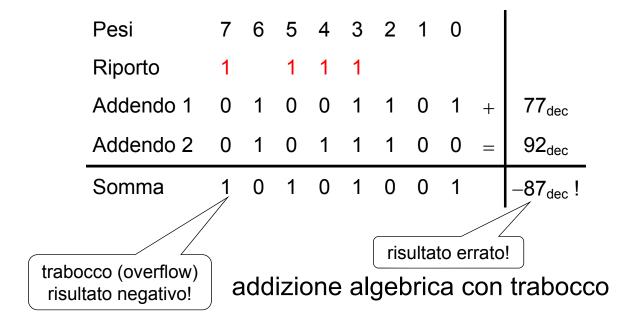
L'algoritmo è identico a quello naturale!
 (come se il bit di segno non fosse negativo)

G. Cecchetti Architettura dei Calcolatori 47

Come funziona l'addizione algebrica in C₂



Overflow nell'addizione in C₂



G. Cecchetti Architettura dei Calcolatori 49

Come rilevare l'overflow in C₂

- Quando gli addendi sono discordi (cioè di segno diverso) non si verifica mai trabocco:
 - il valore assoluto della differenza è sempre minore del valore assoluto del minuendo o del sottraendo!
- Quando gli addendi sono concordi (di segno uguale), si verifica trabocco se e solo se il segno del risultato non concorda con quello degli addendi, cioè se si hanno:
 - addendi positivi ma risultato negativo
 - addendi negativi ma risultato positivo

Sottrazione algebrica in C₂

- Per sottrarre in complemento a due, basta prima invertire (in C₂) il sottraendo, e poi addizionare.
- Salvo il verificarsi di trabocco, la sottrazione in C₂ non ha restrizioni.
- In effetti, in C₂ addizione e sottrazione si possono riguardare essenzialmente come la medesima operazione: addizione algebrica.
- È uno dei motivi (forse il principale) che fanno del complemento a due la tecnica di rappresentazione preferita nel calcolatore.

G. Cecchetti Architettura dei Calcolatori 51

Esempio sottrazione usando il C₂ (caso 1)

n=8, 30 - 22

$$30_{10} \rightarrow 00011110_2$$

 $22_{10} \rightarrow 00010110_2$, trasformo 22 in compl. a 2:
 $-22_{10} \rightarrow 11101001_2 + 1 = 11101010_2$

Ora sommo a 30 il -22 così ottenuto:

```
30_{10} \rightarrow 00011110_{2} + 
-22_{10} \rightarrow 11101010_{2} = 
-----
100001000
```

↑ c'è riporto! → il risultato è positivo.

Esempio sottrazione usando il C₂ (caso 2)

n=8, 19 - 22

$$19_{10} \rightarrow 00010011_2$$

$$22_{10} \rightarrow 00010110_2$$
, trasformo 22 in compl. a 2:

$$-22_{10} \rightarrow 11101001_2 + 1 = 11101010_2$$

Ora sommo a 19 il -22 così ottenuto:

$$19_{10} \rightarrow 00010011_{2} + \\
-22_{10} \rightarrow 11101010_{2} = \\
-----$$

$$_{111111101} = -3_{10}$$

↑ non c'è riporto! → Il risultato è negativo.

G. Cecchetti Architettura dei Calcolatori 53

Esempi vari di addizione algebrica in C₂

Osservazioni sulla rappresentazione in C₂

- La tecnica di rappresentazione in complemento a due oggi è quella più usata nel calcolatore.
- Rispetto alle altre due (naturale e segno-valore assoluto), è un buon compromesso tra:
 - semplicità di definizione
 - capacità di rappresentare i numeri
 - ed efficienza delle operazioni

G. Cecchetti Architettura dei Calcolatori 55

Osservazioni sulle operazioni in C₂

- Esistono algoritmi (e circuiti digitali) per calcolare anche moltiplicazione, divisione (intera), resto e quoziente, ecc.
- Le stesse operazioni di addizione e sottrazione ammettono svariati altri algoritmi (oltre a quello a propagazione di riporto o prestito), talvolta molto raffinati ed efficienti.
- L'aritmetica del calcolatore è una scienza importante (e difficile), cui il calcolatore ha dato un impulso decisivo negli ultimi 60 o 70 anni.

Numeri razionali

- Rappresentazione in virgola fissa
- Rappresentazione in virgola mobile (standard IEEE-754)

G. Cecchetti Architettura dei Calcolatori 57

Numeri frazionari in virgola fissa

- La rappresentazione in virgola fissa si basa sull'idea di suddividere la sequenza di bit rappresentante il numero frazionario in due parti di lunghezza prefissata (ma non necessariamente uguale): parte intera e frazionaria.
- Il numero di bit a sinistra e destra della virgola è stabilito a priori, anche se alcuni bit restano nulli.

Numeri frazionari: da binario a decimale

■ La stringa: ,b₋₁b₋₂ ... b_{-m} si interpreta come:

$$b_{-1}x \ 2^{-1} + b_{-2}x \ 2^{-2} + \dots + b_{-m}x \ 2^{-m}$$

- Esempi:
 - □ 0,101₂ corrisponde al numero decimale:

$$1x2^{-1} + 0x2^{-2} + 1x2^{-3} =$$

 $1/2 + 1/8 =$
 $0.5 + 0.125 = 0.625_{10}$

0,1011₂ corrisponde al numero decimale:

$$1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4} =$$
 $1 / 2 + 1 / 8 + 1 / 16 =$
 $0,5 + 0,125 + 0,0625 =$
 $0,6875_{10}$

G. Cecchetti Architettura dei Calcolatori 59

Numeri frazionari: da decimale a binario

Dato il numero F in base 10, si tratta di trovare la stringa b₋₁b₋₂ ... b_{-m} tale per cui:
F = b₋₁x 2⁻¹ + b₋₂x 2⁻² + ... + b_{-m}x 2^{-m}

Osservando che
$$b_{-1}$$
 è la parte intera del prodotto:
 $2xF = b_{-1} + b_{-2}x \ 2^{-1} + ... + b_{-m}x \ 2^{-(m-1)}$

Si deduce che la ricerca dei coefficienti b_i richiede un processo di successive moltiplicazioni della parte frazionaria con la parte intera.

Il processo termina solo quando la parte frazionaria risulta 0 oppure il numero è periodico.

Esempio di numeri frazionari in binario

■
$$0.78125_{10} \rightarrow$$

 $0.78125 \times 2 = 1.5625 \rightarrow 1$
 $0.5625 \times 2 = 1.125 \rightarrow 1$
 $0.125 \times 2 = 0.250 \rightarrow 0$
 $0.25 \times 2 = 0.5 \rightarrow 0$
 $0.5 \times 2 = 1.0 \rightarrow 1$
dunque: $0.78125_{10} = 0.11001_{2}$

19,6875_{dec} = 10011,1011 in quanto
 19_{dec} = 10011₂ e 0,6875_{dec} = 0,1011₂
 5 bit parte intera, 4 bit parte frazionaria

G. Cecchetti Architettura dei Calcolatori 61

Osservazioni sulla virgola fissa

- Dato che la posizione delle virgola è stabilita a priori, <u>addizione e sottrazione si svolgono come</u> <u>con i numeri interi (gli algoritmi sono</u> sostanzialmente gli stessi).
- La virgola fissa è una rappresentazione semplice, ma poco flessibile, e può condurre a spreco di bit.
- Inoltre, per rappresentare numeri grandi oppure precisi occorrono molti bit.

Numeri in virgola mobile (1/2)

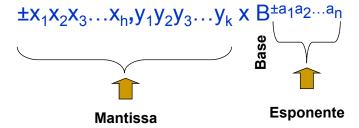
- Per rappresentarli si fa uso di rappresentazioni normalizzate aventi lo scopo di non doversi curare della posizione della virgola e del numero delle cifre utilizzate.
- Queste rappresentazioni vengono espresse come il prodotto di due fattori:
 - le cifre significative del numero,
 - una potenza del 10 il cui esponente definisce la posizione della virgola nel numero.
- Si usa spesso la rappresentazione in virgola mobile (floating point) anche in base 10, dove è chiamata notazione scientifica:

$$0,137 \times 10^8$$
 notazione scientifica vale $13.700.000$ _{dec}

G. Cecchetti Architettura dei Calcolatori 63

Numeri in virgola mobile (2/2)

In generale una rappresentazione approssimata di un numero è data da:



- In binario, si utilizzano gli elementi seguenti:
 - > un bit s per esprimere il segno
 - m ≥ 1 bit per la mantissa (numero naturale)
 - e' ≥ 1 bit per l'esponente (numero intero)

in totale dunque occorrono 1 + m + e' bit.

Rappresentazione esponenziale normalizzata

Convenzione:

la prima cifra significativa si trova immediatamente a destra della virgola.

- A tal fine basta aumentare o diminuire il valore dell'esponente di tante unità quante sono le posizioni di cui è stata spostata la virgola.
- Esempi: $127x10^6 = 0,127x10^9$ $15x10^{-7} = 0,15x10^{-5}$

G. Cecchetti Architettura dei Calcolatori 65

Compattamento dalla rappresentazione

- Eliminare:
 - 0 iniziale
 - la virgola decimale
 - il segno di prodotto
 - il valore della base della potenza
- Lunghezza della mantissa costante
- Limitare gli esponenti ad un intervallo
- Polarizzare l'esponente
- Disporre segno, esponente e mantissa in un ordine stabilito.

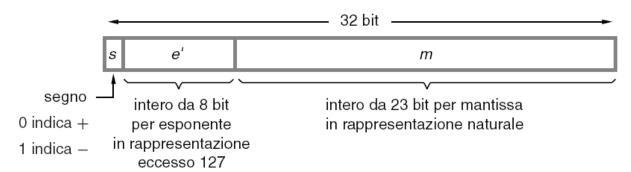
Standard IEEE-754 (formato base, precisione singola)

- La mantissa è un numero la cui parte intera è sempre 1, ma il corrispondente bit è nascosto (la mantissa si compone solo della parte frazionaria).
- 1 bit di segno, 8 di esponente e 23 di mantissa.

Ampiezza parola	32
Ampiezza esponente	8
P (mantissa)	23
E _{max}	127
E _{min}	-126
Costante	127
polarizzazione	

G. Cecchetti Architettura dei Calcolatori 67

Formato IEEE-754 singola precisione



Il valore (frazionario) del numero rappresentato è:

val
$$(se'm) = \pm f \times 2^e = \begin{cases} +1, m \times 2^{e'-127} & \text{se } s = 0 \\ -1, m \times 2^{e'-127} & \text{se } s = 1 \end{cases}$$

dove
$$f = 1, m \text{ ed } e = e' - 127$$

Esempi (1/3)

0 00101000 001010...

0

$$e' = 32 + 8 = 40$$

valore rappresentato = \pm 1,001010 ... 0 × 2⁴⁰⁻¹²⁷ = +1,001010 ... 0 × 2⁻⁸⁷

G. Cecchetti Architettura dei Calcolatori 69

Esempi (2/3)

- $\mathbf{5}_{10} = 101_2 = 1,01_2 \times (10^{10})_2$
 - □ il segno è positivo,
 - □ l'esponente vale (2₁₀ + costante di polarizzazione)= 129₁₀ cioè 10000001₂
 - la mantissa vale 01

dunque la rappresentazione e':

- s esponente mantissa
- 0 10000001 01000000000000000000000

Esempi (3/3)

- 1284,91₁₀=1010000 0100,1110100011110...₂ =
- 1, 01000001001110100011110₂ x (10¹⁰¹⁰)₂
 - □ il segno è positivo,
 - □ l'esponente vale $(10_{10}$ + costante di polarizzazione)= 137_{10} cioè 10001001_2
 - la mantissa vale 01000001001110100011110

dunque la rappresentazione e':

- s esponente mantissa
- 0 10001001 01000001001110100011110

G. Cecchetti Architettura dei Calcolatori 71

Osservazioni sulla rappresentazione in virgola mobile

- Il formato di virgola mobile permette di rappresentare efficacemente sia numeri estremamente grandi sia numeri vicinissimi a zero, con molte cifre frazionarie.
- In altre parole, esso combina <u>estensione</u> e <u>precisione</u>.
- Per questo motivo tale formato è di solito quello preferito nel calcolatore per rappresentare il numero frazionario.
- Ciò vale specialmente nei calcoli di tipo scientifico, dove spesso occorre avere sia estensione sia precisione.

Operazioni in virgola mobile

- Il formato di virgola mobile dispone di algoritmi abbastanza semplici ed efficienti per calcolare addizione, sottrazione e moltiplicazione, e altre operazioni ancora.
- Le operazioni in virgola mobile vengono ridotte a (poche) operazioni su numeri interi.
- Nel fare questo, ci sono numerosi aspetti importanti da definire: come arrotondare, se trattare o meno gli errori, e simili.

G. Cecchetti Architettura dei Calcolatori 73

Operazioni in virgola mobile

- Addizione e sottrazione
 - Si rendono eguali gli esponenti mediante la traslazione a dx del numero con esponente minore (l'esponente del risultato è uguale all'esponente del più grande)
 - Addizione delle mantisse (e segno)
 - Eventuale normalizzazione
- Moltiplicazione
 - Somma esponenti e sottrazione costante di polarizzazione
 - Moltiplicazione delle mantisse (e segno)
 - Eventuale normalizzazione
- Divisione
 - Sottrazione esponenti e somma costante di polarizzazione
 - Moltiplicazione delle mantisse (e segno)
 - Eventuale normalizzazione

Precisione: bit di guardia

- I registri dei calcolatori moderni hanno dimensioni maggiori di quelle della mantissa
- Bit di guardia: sono i bit rimanenti del registro non presenti nella mantissa ed utilizzati nei passaggi intermedi dell'elaborazione (maggior precisione di calcolo).
- Il numero copiato in memoria viene arrotondato ed i bit di guardia vengono eliminati.

G. Cecchetti Architettura dei Calcolatori 75

Precisione: Arrotondamento

- Standard IEEE 754-1985
 - Arrotondamento standard verso il valore più vicino Esempio:
 - 0, $b_1b_2b_3b_4b_5b_6b_7b_8$
 - Arrotond. \rightarrow 0,b₁b₂b₃b₄
 - Se è ≥ 1000₂ →si aggiunge 1 all'ultima cifra (b₄)
 - Se è < $1000_2 \rightarrow \text{si tronca}$.
 - Troncamento
 - ! polarizzazione verso lo zero
 - Arrotondamento per eccesso
 - Arrotondamento per difetto

Eccezioni

- Vengono segnalate dalla CPU al programmatore al fine di poterle gestire.
 - Underflow
 - Overflow
 - Divisione per zero
 - Eccezione per inesattezza
 - Eccezione per invalidità

G. Cecchetti Architettura dei Calcolatori 77

Informazioni di carattere alfanumerico

Codifica ASCII

E' una forma di codifica alfanumerica, attualmente e' su 8 bit e consente di rappresentare tutti i caratteri alfabetici, maiuscoli e minuscoli, i numeri, i segni di punteggiatura, alcuni simboli matematici oltre ad alcuni caratteri di controllo.

Esempio: 'A' = 41_{16} = 65_{10} , '9'= 39_{16} = 57_{10}

Codifica BCD (Binary Coded Decimal)

Viene usata per rappresentare le cifre binarie decimali su 4 bit.

Esempio: $147_{10} = 0001 \ 0100 \ 0111_{BCD}$

Tabella ASCII standard

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	NUL	32	20		64	40	0	96	60	٤
1	01	SOH	33	21	!	65	41	A	97	61	a
2	02	STX	34	22	"	66	42	В	98	62	ъ
3	03	ETX	35	23	#	67	43	C	99	63	С
4	04	EOT	36	24	\$	68	44	D	100	64	d
5	05	ENQ	37	25	%	69	45	E	101	65	e
6	06	ACK	38	26	&	70	46	F	102	66	f
7	07	BEL	39	27	,	71	47	G	103	67	g
8	80	BS	40	28	(72	48	H	104	68	h
9	09	TAB	41	29)	73	49	I	105	69	i
10	0A	LF	42	2A	*	74	4A	J	106	6A	j
11	0B	VT	43	2B	+	75	4B	K	107	6B	k
12	0C	FF	44	2C	,	76	4C	L	108	6C	1
13	0D	CR	45	2D	-	77	4D	M	109	6D	m
14	0E	SO	46	2E	•	78	4E	N	110	6E	n
15	0F	SI	47	2F	/	79	4F	0	111	6F	0
16	10	DLE	48	30	0	80	50	P	112	70	P
17	11	DC1	49	31	1	81	51	Q	113	71	q
18	12	DC2	50	32	2	82	52	R	114	72	r
19	13	DC3	51	33	3	83	53	S	115	73	s
20	14	DC4	52	34	4	84	54	T	116	74	t
21	15	NAK	53	35	5	85	55	U	117	75	u
22	16	SYN	54	36	6	86	56	V	118	76	v
23	17	ETB	55	37	7	87	57	W	119	77	w
24	18	CAN	56	38	8	88	58	Х	120	78	х
25	19	$_{\rm EM}$	57	39	9	89	59	Y	121	79	У
26	1A	SUB	58	3A	:	90	5A	Z	122	7A	z
27	1B	ESC	59	3B	;	91	5B]	123	7B	-{
28	1C	FS	60	3C	<	92	5C	\	124	7C	
29	1D	GS	61	3D	=	93	5D]	125	7D	}
30	1E	RS	62	3E	>	94	5E	^	126	7E	~
31	1F	US	63	3F	?	95	5F	-	127	7F	DEL